The effect of mutual information on independent component analysis in EEG/MEG analysis: a simulation study.

نویسندگان

  • A Neumann
  • M Grosse-Wentrup
  • M Buss
  • K Gramann
چکیده

OBJECTIVE This study investigated the influence of mutual information (MI) on temporal and dipole reconstruction based on independent components (ICs) derived from independent component analysis (ICA). METHOD Artificial electroencephalogram (EEG) datasets were created by means of a neural mass model simulating cortical activity of two neural sources within a four-shell spherical head model. Mutual information between neural sources was systematicallyvaried. RESULTS Increasing spatial error for reconstructed locations of ICs with increasing MI was observed. By contrast, the reconstruction error for the time course of source activity was largely independent of MI but varied systematically with Gaussianity of the sources. CONCLUSION Independent component analysis is a viable tool for analyzing the temporal activity of EEG/MEG (magnetoencephalography) sources even if the underlying neural sources are mutually dependent. However, if ICA is used as a preprocessing algorithm for source localization, mutual information between sources introduces a bias in the reconstructed locations of the sources. SIGNIFICANCE Studies using ICA-algorithms based on MI have to be aware of possible errors in the spatial reconstruction of sources if these are coupled with other neural sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

​Rank based Least-squares Independent Component Analysis

  In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...

متن کامل

BMICA-Independent Component Analysis Based on B-Spline Mutual Information Estimation for EEG Signals

Electroencephalogram (EEG) serves as an extremely valuable tool for clinicians and researchers to study the activity of the brain in a non-invasive manner. It has long been used for the diagnosis of brain damage, for categorizing sleep stages and various central nervous system disorders like seizures and epilepsy. The EEG source signals are mixed however with other signals such as Electrooculog...

متن کامل

Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis

Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more "interesting" sources than with time-domain ICA, and to more meaningful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of neuroscience

دوره 118 11  شماره 

صفحات  -

تاریخ انتشار 2008